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Abstract. In this article, a method is proposed to obtain the equations of motion of a
pantographic closed-loop chain manipulator, with three degrees of freedom, using the
Newton-Euler formulation. The mathematical model is developed dividing the mechanism in
open-loop chains while preserving the constraint relations due to the pantographic mounting.
In each of the open-loop chains, an external force applied in its extremity may be determined
by means of a vectorial equation system so that the torques in the passive joints axis are null.
These joints are the ones where there is no actuator providing external torque. After these
forces are determined, they enter as reaction forces in another open-loop chain, determining
the solution of the inverse dynamics problem. Through the adequate manipulation of some
input vectors of the inverse dynamics procedure, it is possible to obtain the mass matrix of the
system and the vectors related with the action of the gravity, Coriolis and centrifuge inertia
forces, setting up the direct dynamic system. Results of simulations are presented for some
trajectories. The method, with small modifications, can be adapted to other closed-loop chain
mechanisms as long as the constraints relating the passive to the active joints are established.
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1. INTRODUCTION

A robotic manipulator may be defined as an electro-mechanic device that has the function
of positioning and orientating a mechanism located in its extremity, the hand, as described by
Martins et al. (1991). The main function of this mechanism is to permit the fixation of tools or
other devices, that depend on the type of task to be performed. Two parts should be
considered in a manipulator structure. The first is the arm, which consists of at least three
degrees of freedom (dofs) and used to position the hand. The second part is the wrist, usually
constituted by other three rotational dofs for hand orientation.

However, for the accomplishment of specific tasks, it is not necessary that the hand has
complete orientation freedom around a point. In order to reduce its cost, robots dedicated to
perform certain tasks have been proposed. These structures usually have less than five dofs
and a configuration such that its hand possesses the desired freedom of movement.



1.1 Mechanical structure

To present the method, a pantographic mechanism, similar to the one proposed by
Zampieri et al. (1991) and illustrated in fig. 1, was considered. The structure has eleven
kinematic pairs but 4 generalized coordinates are sufficient to describe its motion, the first one
being the rotation at the waist. The fourth generalized coordinate is dependent on the values
of the previous two, which  is due to the pantographic characteristic of the mechanism, giving
to the wrist the property of rotating only around the axis of rotation of the waist (joint 1). This
feature makes this type of structure adequate to perform tasks that need this attribute at the
wrist, as for example painting, welding, machining etc. Another important advantage of this
structure is the high rigidity given by the closed chain and the good accuracy of orientation of
the hand terminal, independent of the control system. External loadings on the manipulator
wrist are not considered in the following presentation.

Figure 1 – Representation of the pantographic mechanism.

2. FORMULATION OF THE INVERSE DYNAMICS

The objective of the inverse dynamics is to determine the driving forces required by the
actuators in order to perform a given trajectory. To do so, a procedure proposed initially by
Luh et al. (1980), based on the Newton and Euler equations applied to rigid bodies, is usually
employed.

In this procedure, after the characterization of the parameters of inertia of the manipulator
and the kinematics of the problem in the joint space, the values of angular velocity and
angular and linear acceleration at the center of mass of each link are calculated in a recursive
form, beginning at the base and finalizing at the wrist. Next, after the determination of the
resultants of the forces and moments around the center of mass of each link, the required
torques are established through the determination of the forces and moments acting at the
joints at each link, also in a recursive form, beginning now at the wrist and concluding at the
base (Craig, 1989, and Yoshikawa, 1990). However, as implicit in the algorithm description,
its application is only described for open chain manipulators and with external loading only at
its free end.



Analyzing the pantographic mechanism represented in fig. 1, it may be observed that it
can be divided into two open chains that interact one with the other, as illustrated in figures 2
and 3. In these figures, numbers are used to represent active joints (with actuators) and links
connected to these. Letters are used to represent passive joints and links not connected to
active joints.

The first mechanism represents the last quadrilateral and its kinematic connection with
the base. The objective now is to determine the force and the moment that acts at its free end,
point N, and produces no binaries in the Z direction of L and M joints. The determination of
these allow the use of the usual Newton-Euler procedure to determine the required torque in
joint three. It is evident that being a methodology based on rigid body mechanics, some
components of the force and moment vectors  are undetermined. More specifically, the Z
component of the force and the X and Y components of the moment. However, the
determination of the torque in joint 3, that is, of component Z of the moment N3, does not
require these undetermined values. A symbolic analysis, which was undertaken to derive the
equations presented here, using MATLAB (1997), confirms this assertive.
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Figure 2 – Frame positions for the first mechanism.



The expressions to calculate the forces and moments at joints L, M and 3 are:

MNNMM FcFRF +⋅=                                                                                                     (1)

( )NNMNMMMMNNMM FRpFcsNcNRN ⋅×+×++⋅=                                              (2)

LMMLL FcFRF +⋅=                                                                                                       (3)

( )MMLMLLLLMMLL FRpFcsNcNRN ⋅×+×++⋅=                                                   (4)

333 FcFRF LL +⋅=                                                                                                          (5)

( )LLLLL FRpFcsNcNRN ⋅×+×++⋅= 3333333                                                        (6)

where:

iF is the force at joint i

iN is the moment at joint i

1, −iiR is the rotation matrix of frame i relative to frame i-1

1, −iip is the position vector of frame i relative to frame i-1

is is the position vector of the center of mass of link i, relative to its frame

iFc is the resultant force at link i

iNc is the resultant moment at link i, in relation to the center of mass

The Denavit-Hatenberg (1955) parameters for the first mechanism, in accordance with
the frames presented in fig. 2, are presented in table 1 together with the moments of inertia of
it’s links. From the former, the constraint equations may be expressed as:
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Table 1 – Denavit-Hartenberg and inertia parameters for the first mechanism

i 1−iα 1−ia 1−iθ 1−id im xr yr zr xxI yyI zzI

1 0 0 1θ 0 1m 0 0
2
0L

XX
I1 YY

I1 YY
I1

2 90
2

2L−
2θ 0 2m

2
1L

0 0 0
YY

I2 YY
I2

3 0 1L 3θ 0 2m
2
1L

0 0 0
YY

I2 YY
I2

L 0 1L 32 θθ −− 0 3m
2
2L

0 0 0
YY

I3 YY
I3

M 0 2L 32180 θθ ++ 0 2m
2
1L

0 0 0
YY

I2 YY
I2

N 0 1L 0 0 0 0 0 0 0 0 0



Solving equation (2) for null value for the Z component of MN , since there is no external
torque, an expression for the Y component of the external force applied at the free end of the
mechanism is derived:
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where )z(FiM  is the third component of ( )MMM FcsNc ×+  and whose value may be
determined through the first recursive loop of the Newton-Euler algorithm. In an analogous
way, solving equation (4) for null Z component of LN , an expression for the X component is
obtained:
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where )z(FiL  is the Z component of ( )LLL FcsNc ×+  and )x(FcM  and )y(FcM  are the X

and Y components of the vector MFc , which is also calculated through the first loop. The
variables q2 and q3 are the second and third joint displacements, respectively. The Z
component of the moment at joint 3 may now be calculated from the following expression:

)()()()()()()()( 132321133 yFcLqqcosqqsinLxFcLyFczFizFiz LLMM ⋅⋅+++⋅⋅−⋅−+=τ   (10)

where )z(Fi3  is the Z component of ( )333 FcsNc ×+ .

Therefore, it is possible to derive an analytical expression for the required torque at joint
3, which is one of the unknowns of the inverse dynamics problem. To introduce external
loading on the manipulator wrist, it would be enough to introduce additional terms in
equations 3 and 4, similar to the ones employed in the following equations 11 and 12 or 15
and 16 or 17 and 18.

The function of the second mechanism is to determine the binaries in joints 1 and 2. The
force and moment equations of this system have to consider the reaction forces caused by the
connections with the previous structure. The modified expressions, in order to contemplate
the reaction forces, are:

( )NNBBDDBB FRFcFRF −⋅++⋅=                                                                                (11)

( ) ( ) ( )( )NNBNBNNBDDBDBBBBDDBB FRpNRFRpFcsNcNRN −⋅×+−⋅+⋅×+×++⋅=   (12)

ABBAA FcFRF +⋅=                                                                                                       (13)

( )BBABAAAABBAA FRpFcsNcNRN ⋅×+×++⋅=                                                    (14)

KKAA FRFcFRF ⋅++⋅= 2222                                                                                     (15)

( ) ( )KKKKKAAAAA FRpNRFRpFcsNcNRN ⋅×+⋅+⋅×+×++⋅= 2222222222    (16)

( )DFRFcFRF −⋅++⋅= 0112211                                                                                      (17)



( ) ( ) ( )( )DD FRpNRFRpFcsNcNRN −⋅×+−⋅+⋅×+×++⋅= 010101221211112211   (18)
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Figure 3 – Frame positions for the second mechanism.

The constraint equations for the second mechanism are:
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For the second mechanism, the torque at joint 2 is function of )x(FD  and )y(FD  as well

as of )x(FN  and )y(FN , which were previously calculated. Solving equations (12) and (14)

for null values for the Z components of BN  and AN , the values of DxF  and DyF  are

determined. These values are substituted into to the Z components of 2N  and 1N , in a similar
way as in the first mechanism, determining the solution of the complete inverse dynamics
problem.

It is important to note that the procedure presented in this section may be said to be a
hybrid one. That is, the first recursive loop is performed numerically while an analytical
expression, established by a symbolic analysis, was used instead of the second recursive loop.
This is considered to be a reasonably efficient technique, leading to smaller computational
effort and less numerical error (Machado, 1996).



3. SIMULATIONS

In order to test the mathematical model obtained by the procedure presented in the
previous section, two simulations were made with MATLAB (1997). The first simulation
performed two direct dynamics analysis, mounted by means of the Walker & Orin algorithm
(1980). For the numeric solution of a direct dynamics problem by means of a step by step
integration, this algorithm employs the inverse dynamics in order to determine the mass
matrix and the vectors related to the gravity, Coriolis and centrifuge inertia forces for each
integration step, through the manipulation of the input vectors of angular position, velocity
and acceleration in the joint space.

The initial values of the joint displacement and velocity vectors of the first analysis were:

[ ]T
q 0700 0−=    and   [ ]T

q 000=
•

While the initial values of the second analysis were:

[ ]T
q 05000=    and   [ ]T

q 000=
•

The results are shown in figures 4 and 5, representing free oscillations from the specified
initial conditions under self weight loading in the –Z direction of the inertial base frame, see
figure 2. Therefore, in the two simulations, joint two oscillates around –90 degrees and the
other two joints around zero degrees, which are their equilibrium positions. In these analyses,
only the coherence of the results were verified.
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Figure 4 – Results of the first analysis.
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The second simulation calculates the required driving forces for a specified trajectory
directly from the mathematical model. The trajectory was represented by means of a fifth
degree polynomial, where the initial and final vectors of joint coordinates were:

[ ]T

iq 0900 0−=    and   [ ]To
fq 00 184590 −−=

and the time at the end of the trajectory is 5.0s. The trajectories and required torques are
presented in fig. 6. The torques at the initial and final positions, where the velocity and the
acceleration are specified to be null, were compared with the statically calculated values at
these positions and agreed.

4. CONCLUSION

In order to solve for the inverse dynamics problem of a closed-loop chain manipulator, a
procedure, based on the recursive Newton-Euler algorithm was developed. The procedure
employs a hybrid approach to solve the problem. Simulations show that the results are
coherent. The method, with small modifications, can be adapted to other closed-loop chain
mechanisms.

Once established the simulation procedure, design of the manipulator and its control
follows. Afterwards, a prototype should be mounted and tested.

Figure 5 – Results of the second analysis.
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Figure 6  –  Input and results from the inverse dynamics simulation


